Center Innovation Fund: JSC CIF

Future Autonomous and Automated Systems Testbed

Completed Technology Project (2012 - 2012)

Project Introduction

Trust is the greatest obstacle to implementing greater autonomy and automation (A&A) in the human spaceflight program. The Future Autonomous and Automated Systems Testbed (FAAST) is an R/C helicopter-based system being developed by the Aeroscience and Flight Mechanics Division (EG) as a low-cost, low-risk, hands-on way for customers (program management, crew, and operators) to become familiar with and build trust in A&A systems, and as a platform for engineers to quickly and cheaply test A&A architectures and algorithms. An early goal of this project is the development of an autonomous GN&C system, a key component of which is access to suitable sensor hardware. In this project we requested funds to procure navigation sensors (e.g. MEMS IMU, GPS receiver, LIDAR, etc.) in support of this effort.

It is also envisioned as a platform for building trust in A&A systems among key stakeholders such as program/project management, crew members, and operators. We researched and procured navigation sensors (e.g. MEMS IMU, GPS receiver, LIDAR, etc.) and integrated them into the helicopter platform, with the objective of performance suitable for autonomous waypoint navigation. The intended product of this activity is the development of a prototype navigation system that will form the navigation backbone of FAAST. Upon completion of this project's work, FAAST will have a functioning navigation system suitable for enabling future A&A research objectives, including autonomous rendezvous and docking, and autonomous take-off and landing.

Anticipated Benefits

N/A

Project Image Future Autonomous and Automated Systems Testbed

Table of Contents

Project Introduction	1	
Anticipated Benefits		
Primary U.S. Work Locations		
and Key Partners	2	
Organizational Responsibility	2	
Project Management	2	
Images	3	
Technology Maturity (TRL)	3	
Technology Areas	3	

Future Autonomous and Automated Systems Testbed

Completed Technology Project (2012 - 2012)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
	Lead	NASA	Houston,
	Organization	Center	Texas

Primary U.S. Work Locations

Texas

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Johnson Space Center (JSC)

Responsible Program:

Center Innovation Fund: JSC CIF

Project Management

Program Director:

Michael R Lapointe

Program Manager:

Carlos H Westhelle

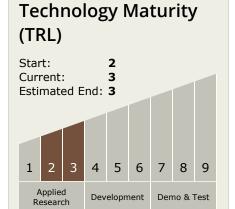
Project Manager:

Angela N Braun

Principal Investigator:

Angela N Braun

Future Autonomous and Automated Systems Testbed



Completed Technology Project (2012 - 2012)

Images

12422-1380063860039.pngProject Image Future Autonomous and Automated Systems Testbed (https://techport.nasa.gov/imag e/2321)

Technology Areas

Primary:

- TX17 Guidance, Navigation, and Control (GN&C)
 - □ TX17.2 Navigation
 Technologies
 - ☐ TX17.2.1 Onboard Navigation Algorithms

